Optimizing the HIAC 8011+ Particle Counter for Analyzing Viscous Fluids
There are 3 primary elements that directly impact the HIAC 8011+’s ability to analyze viscous fluids; sensor aperture size, flow rate, and the HIAC 8011+ instruments pressure settings. Configuration design options and internal operator selectable features will optimize the instrument to allow measurement capability across a wide range of fluids and viscosities.Introduction
A challenge for many industrial applications is finding a Liquid Particle Counting instrument that has the capability of running not only a wide range of fluid types and chemistries, but also a wide range of
viscosities. With some fundamental system configuration considerations and utilizing the feature setup flexibility of the HIAC 8011+, optimization is “so easy a Caveman could do it”.
- Sensor selection
This is a critical first step when designing your system for your application. Below in Table 1 there are 4 important considerations for selecting your sensor.
- What calibration type is appropriate to report my results? Ie. ISO, NAS, or SAE codes?
- Do I need High concentration sensor as I am running dirtier fluids?
- High Concentration sensors have a published concentration limit of 18,000 counts/ml.
- Standard Concentration sensors have a published concentration limit of 10,000 counts/ml.
- Do I need to have my sensor calibrated at multiple flow rates to accommodate both low and higher viscosity fluids?
- Is the sensor aperture size the largest possible to accommodate the heavier fluids?
Sensor
ModelCalibration
OptionsFlow Rates
(ml/Minute)Aperture
SizeISO-MTD ACFTD PSL HRLD100 x x x 10, 20, or 60 400 x 1000 µm HRLD100HC x x x 10 or 20 400 x 400 µm HRLD400 x x 10, 20, or 60 400 x 1000 µm HRLD400HC x x 10 or 20 400 x 400 µm
- Flow rate selection
Regarding more viscous fluids, the lower the flow rate, the easier it is to regulate the flow through the system. The most prudent option is to have 2 calibrations performed: one at the slowest flow rate and one at the fastest flow rate allowable for your particular sensor. This allows the ability to successfully measure the entire range of fluids within the HIAC 8011+ system specifications. An important takeaway is that with the multiple sensor flow rate capability, you can select a calibration with a faster flow rate when running the thinner fluids to improve efficiency with daily throughput.
- Pressure settings
Pressure is important in this system as it is used as an aid to degassing the sample, and in the case of more viscous fluids will assist the internal precision metering pump to push and regulate the flow rate of the heavier fluids during sampling. There is a pressure regulator valve mounted at the lower left on the front panel of the HIAC 8011+ as indicated in Figure 1 below. Clockwise adjustment of this knob will increase the chamber pressure during a test run. The maximum pressure setting for the system is 90 PSI. The other setting is the initial start pressure which is parameter that is chosen within the instrument setup menu. This setting establishes the point at which the sample measurement will begin. If heavier fluids are being measured it is recommended that this setting be set to ~ 5 PSI less than the chamber pressure setting. This allows the pressure chamber to achieve a minimum pressure level that will allow accurate flow regulation of the heavier fluids right from the beginning of the sample.
Figure 1
Conclusion
A typical HIAC 8011+ system configuration and set up:
HIAC 8011+ with an HRLD100 sensor calibrated at 2 different flow rates; 10ml and 60ml per minute. The operator would adjust the pressure regulator to 80-90 PSI and set the initial start pressure within the instrument setup menu to 5 PSI less than the Chamber pressure setting.
Rationale: The HRLD100 sensor can be calibrated with the NIST traceable ISO-MTD, but also with ACFTD if necessary so would be able to report out appropriately to any industrial reporting standard. It has the largest aperture which is friendlier to the heavier fluids, and can be calibrated at the lowest and highest flow rates of the sensors listed.
About the author
Bill F. Bars is a Sr. Application Scientist for Beckman Coulter Life Sciences in Grants Pass, Oregon, USA. He has created and developed many of the liquid systems production processes and procedural tools for the BEC Particle products. These products include but are not limited to the following HIAC branded products: 8011+, PODS, GlyCount, 9703+, ROC, and HRLD Sensors.
He has worked for Beckman Coulter Life Sciences for 19 years in a multitude of engineering capacities ranging from Metrology to Service Training and Application Support. He is a member of the NFPA U.S. TAG to ISO/TC 131/SC 6 - Contamination control group. Email Bill F. Bars at: bbars@beckman.com
Helpful Links
-
Reading Material
-
Application Notes
- 17-Marker, 18-Color Human Blood Phenotyping Made Easy with Flow Cytometry
- 21 CFR Part 11 Data Integrity for On-line WFI Instruments
- 8011+ Reporting Standards Feature and Synopsis
- Achieving Compliant Batch Release – Sterile Parenteral Quality Control
- Air Particle Monitoring ISO 21501-4 Impact
- An Analytical Revolution: Introducing the Next Generation Optima AUC
- Analyzing Mussel/Mollusk Propagation using the Multisizer 4e Coulter Counter
- Automated 3D Cell Culture and Screening by Imaging and Flow Cytometry
- Automated Cell Plating and Growth Assays
- Automated Cell Transfection and Reporter Gene Assay
- Automated Cord Blood Cell Viability and Concentration Measurements Using the Vi‑CELL XR
- Automated Genomic Sample Prep RNAdvance
- Automated Genomic Sample Prep Sample Quality Control
- Automated salt-assisted liquid-liquid extraction
- Automated Sample Preparation for the Monitoring of Pharmaceutical and Illicit Drugs by LC-MS/MS
- Automated Transfection Methods
- Automated XTT Assay for Cell Viability Analysis
- Automating a Linear Density Gradient for Purification of a Protein:Ligand Complex
- Automating Biopharma Quality Control to Reduce Costs and Improve Data Integrity
- Automating Bradford Assays
- Automating Cell-Based Processes
- Automating Cell Line Development
- The new Avanti J-15 Centrifuge Improves Sample Protection and Maximizes Sample Recovery
- The New Avanti J-15 Centrifuge Time Saving Deceleration Profile Improves Workflow Efficiency
- Avanti JXN Protein Purification Workflow
- Avoid the Pitfalls When Automating Cell Viability Counting for Biopharmaceutical Quality Control
- Beer, Evaluation of Final Product and Filtration Efficiency
- Biomek Automated Genomic Sample Prep Accelerates Research
- Biomek Automated NGS Solutions Accelerate Genomic Research
- Biomek i-Series Automated AmpliSeq for Illumina® Library Prep Kit
- Biomek i-Series Automated Beckman Coulter Agencourt RNAdvance Blood Kit
- Biomek i-Series Automated Beckman Coulter Agencourt RNAdvance Cell
- Biomek i-Series Automated Beckman Coulter Agencourt SPRIselect for DNA Size Selection
- Biomek i-Series Automated Beckman Coulter AMPure XP PCR Purification System
- Biomek i-Series Automated IDT® xGen Hybridization Capture of DNA libraries on Biomek i7 Hybrid Genomics Workstation
- Biomek i-Series Automated Illumina Nextera DNA Flex Library Prep Kit
- Biomek i-Series Automated Illumina® Nextera XT DNA Library Prep Kit
- Biomek i-Series Automated Illumina TruSeq DNA PCR-Free Library Prep Kit
- Biomek i-Series Automated Illumina TruSeq® Nano DNA Library Prep Kit
- Biomek i-Series Automated Illumina TruSeq® Stranded mRNA Sample Preparation Kit Protocol
- Biomek i-Series Automated Illumina TruSeq® Stranded Total RNA Sample Preparation Kit Protocol
- Biomek i–Series Automated Illumina® TruSight Tumor 170 32 Sample Method
- Biomek i-Series Automated KAPA HyperPrep and HyperPlus Workflows
- Biomek i-Series Automated New England Biolabs NEBNext® Ultra IITM DNA Library Prep Kit
- Biomek i-Series Automated SurePlex PCR and VeriSeq PGS Library Prep for Illumina®
- Biomek i-Series Automation of the Beckman Coulter GenFind V3 Blood and Serum DNA Isolation Kit
- Biomek i-Series Automation of the Apostle MiniMax™ High Efficiency cfDNA Isolation Kit
- Biomek i-Series Automation of the Beckman Coulter Agencourt DNAdvance Genomic DNA isolation Kit
- Preparation and purification of carbon nanotubes using an ultracentrifuge and automatic dispensing apparatus, and analysis using an analytical centrifuge system
- Cell Counting Performance of Vi–Cell BLU Cell Viability Analyzer
- Viability Assessment of Cell Cultures Using the CytoFLEX
- Cell Line Development – Data Handling
- Cell Line Development – Hit Picking
- Cell Line Development – Limiting Dilution
- Cell Line Development – Selection and Enrichment
- Cellular Analysis using the Coulter Principle
- cfDNA Extraction Efficiency Affects NGS Data
- Changes to GMP Force Cleanroom Re-Classifications
- Characterizing Insulin as a Biopharmaceutical Using Analytical Ultracentrifugation
- Clean Cabinet Air Particle Evaluation
- Cleanroom Routine Environmental Monitoring – FDA Guidance on 21 CFR Part 11 Data Integrity
- Comparing Data Quality & Optical Resolution of the Next Generation Optima AUC to the Proven ProteomeLab on a Model Protein System
- Conducting the ISO 14644-3 Cleanroom Recovery Test with the MET ONE 3400
- Considerations of Cell Counting Analysis when using Different Types of Cells
- Consistent Cell Maintenance and Plating through Automation
- Control Standards and Method Recommendations for the LS 13 320 XR
- Counting Efficiency: MET ONE Air Particle Counters and Compliance to ISO-21501
- Critical Particle Size Distribution for Cement using Laser Diffraction
- Use Machine Learning Algorithms to Explore the Potential of Your High Dimensional Flow Cytometry Data Example of a 20–color Panel on CytoFLEX LX
- CytoFLEX
- Detecting and counting bacteria with the CytoFLEX research flow cytometer: II-Characterization of a variety of gram-positive bacteria
- Detecting Moisture in Hydraulic Fluid, Oil and Fuels
- Determination of Size and Concentration of Particles in Oils
- Efficient kit-free nucleic acid isolation uses a combination of precipitation and centrifugation separation methods
- dsDNA Quantification with the Echo 525 Liquid Handler for Miniaturized Reaction Volumes, Reduced Sample Input, and Cost Savings
- Compensation Setup For High Content DURAClone Reagents
- Echo System-Enhanced SMART-Seq v2 for RNA Sequencing
- Effective Miniaturization of Illumina Nextera XT Library Prep for Multiplexed Whole Genome Sequencing and Microbiome Applications
- Efficient Factorial Optimization of Transfection Conditions
- Enhancing Vaccine Development and Production
- Enumeration And Size Distribution Of Yeast Cells In The Brewing Industry
- European Pharmacopoeia EP 2.2.44 and Total Organic Carbon
- Evaluation of Instrument to Instrument Performance of the Vi-CELL BLU Cell Viability Analyzer
- Exosome-Depleted FBS Using Beckman Coulter Centrifugation: The cost-effective, Consistent choice
- Flexible ELISA automation with the Biomek i5 Workstation
- Fully-Automated Cellular Analysis by Flow Cytometry
- Get Control in GMP Environments
- g-Max: Added Capabilities to Beckman Coulter's versatile Ultracentrifuge Line
- Grading of nanocellulose using a centrifuge
- A method of grading nanoparticles using ultracentrifugation in order to determine the accurate particle diameter
- Grading of pigment ink and measurement of particle diameter using ultracentrifugation / dynamic light scattering
- HIAC Industrial – Our overview solution for fluid power testing for all applications
- HIAC PODS+ Online Mode & Filter Cart Mode
- HIAC PODS+ versus Parker ACM-20 Performance comparison
- A complete workflow for high-throughput isolation of DNA and RNA from FFPE samples using Formapure XL Total on the KingFisher™ Sample Purification System: an application for robust and scalable cancer research and biomarker discovery
- High-Throughput qPCR and RT-qPCR Workflows
- A Highly Consistent BCA Assay on Biomek i-Series
- A Highly Consistent Bradford Assay on Biomek i-Series
- A Highly Consistent Lowry Method on Biomek i-Series
- Highly Reproducible Automated Proteomics Sample Preparation on Biomek i-Series
- Cell Line Development – Hit Picking
- How to Use Violet Laser Side Scatter Detect Nanoparticle
- How Violet Side Scatter Enables Nanoparticle Detection
- HRLD Recommended Volume Setting
- Automating the Cell Line Development Workflow
- Hydraulic Oil Measurement
- ICH Q2 – the Challenge of Measuring Total Organic Carbon in Modern Pharmaceutical Water Systems
- ICH Q2 – The Challenge of Measuring Total Organic Carbon in Modern Pharmaceutical Water Systems
- Illumina Nextera Flex for Enrichment on the Biomek i7 Hybrid Genomics Workstation
- Illumina TruSight Oncology 500 Automated on the Biomek NXᴾ Span-8 Genomics Workstation
- Importance of TOC measurement in WFI in light of European Pharmacopoeia change
- Temperature dependence of hydrodynamic radius of an intrinsically disordered protein measured in the Optima AUC analytical ultracentrifuge.
- Isolation of cell-free DNA (cfDNA) from plasma using Apostle MiniMax™ High Efficiency cfDNA Isolation kit— comparison of fully automated, semi-automated and manual workflow processing
- Issues with Testing Jet Fuels for Contamination
- Leveraging the Vi-CELL MetaFLEX for Monitoring Cell Metabolic Activity
- Linearity of BSA Using Absorbance & Interference Optics
- Long Life Lasers
- LS 13 320 XR: Sample Preparation - How to measure success
- Particle Size Analysis Simple, Effective and Precise
- Beckman’s LS 13 320 XR Vs. Malvern Mastersizer
- Using Machine Learning Algorithms to Provide Deep Insights into Cellular Subset Composition
- Flow Cytometric Analysis of auto-fluorescent cells found in the marine demosponge Clathria prolifera
- Matching Cell Counts between Vi–CELL XR and Vi–CELL BLU
- MET ONE 3400
- MET ONE Sensor Verification
- Metal colloid purification and concentration using ultracentrifugation
- Separation and purification of metal nanorods using density gradient centrifugation
- Method for Determining Cell Type Parameter Adjustment to Match Legacy Vi CELL XR
- High-throughput Miniaturization of Cytochrome P450 Time-dependent Inhibition Screening Using the Echo 525 Liquid Handler
- Miniaturization and Rapid Processing of TXTL Reactions Using Acoustic Liquid Handling
- Miniaturized Enzymatic Assays with Glycerol
- Miniaturized and High-Throughput Metabolic Stability Assay Enabled by the Echo Liquid Handler
- Miniaturized Multi-Piece DNA Assembly Using the Echo 525 Liquid Handler
- Miniaturized Sequencing Workflows for Microbiome and Metagenomic Studies
- Minimal Sample to Sample Carry Over with the HIAC 8011+
- Minimizing process variability in the manufacturing of bottled drinking water
- Modern Trends in Non‐Viable Particle Monitoring during Aseptic Processing
- Modular DNA Assembly of PIK3CA Using Acoustic Liquid Transfer in Nanoliter Volumes
- Multi-Wavelength Analytical Ultracentrifugation of Human Serum Albumin complexed with Porphyrin
- Nanoliter Scale DNA Assembly Utilizing the NEBuilder HiFi Cloning Kit with the Echo 525 Liquid Handler
- Particle diameter measurement of a nanoparticle composite - Using density gradient ultracentrifugation and dynamic light scattering
- Identification of Circulating Myeloid Cell Populations in NLRP3 Null Mice
- What to do now that ACFTD is discontinued
- Optimizing the HIAC 8011+ Particle Counter for Analyzing Viscous Fluids
- Optimizing the Multisizer 4e Coutler Counter for use with Small Apertures
- Optimizing Workflow Efficiency of Cleanroom Routine Environmental Monitoring
- Particle Counting in Mining Applications
- Particle testing in cleanroom high-pressure gas lines to ISO 14644 made easy with the MET ONE 3400 gas calibrations
- PCR Reaction Setup and AMPure XP Application
- PCR Reaction Setup Application
- Pharma Manufacturing Environmental Monitoring
- Pharma Manufacturing Paperless Monitoring
- Analysis of plant genome sizes using flow cytometry: a case study demonstrating dynamic range and measurement linearity
- Principles of Continuous Flow Centrifugation
- Flow Cytometric Approach to Probiotic Cell Counting and Analysis
- Protein purification workflow
- Background Subtraction
- Calibrating the QbD1200 TOC Analyzer
- Detection Limit
- Inorganic Carbon Removal
- JP SDBS Validation
- Method Overview
- Overload Recovery
- QbD1200 Preparing Reagent Solution
- USP System Suitability
- Quality Control Electronic Records for 21 CFR part 11 Compliance
- Using the Coulter Principle to Quantify Particles in an Electrolytic Solution for Copper Acid Plating
- A Rapid Flow Cytometry Data Analysis Workflow Using Machine Learning- Assisted Analysis to Facilitate Identifying Treatment- Induced Changes
- Root Cause Investigations for Pharmaceutical Water Systems
- Scalable Plasmid Purification using CosMCPrep
- Full Automation of the SISCAPA® Workflow using a Biomek NXP Laboratory Automation Workstation
- Specification Comparison of Vi–CELL XR and Vi–CELL BLU
- Specifying Non-Viable Particle Monitoring for Aseptic Processing
- A Standardized, Automated Approach For Exosome Isolation And Characterization Using Beckman Coulter Instrumentation
- Streamlined Synthetic Biology with Acoustic Liquid Handling
- Switching from Oil Testing to Water and back using the HIAC 8011+ and HIAC PODS+
- Advanced analysis of human T cell subsets on the CytoFLEX flow cytometer using a 13 color tube-based DURAClone dry reagent
- Using k-Factor to Compare Rotor Efficiency
- Validation of On-line Total Organic Carbon Analysers for Release Testing Using ICH Q2
- Vaporized Hydrogen Peroxide Decontamination of Vi–CELL BLU Instrument
- Vesicle Flow Cytometry with the CytoFLEX
- Vi CELL BLU FAST Mode Option
- Vi-CELL BLU Regulatory Compliance - 21 CFR Part 11
- A workflow for medium-throughput isolation of cfDNA from plasma samples using Apostle MiniMax™ on the KingFisher™ Technology
- Automated Research Flow Cytometry Workflow Using DURA Innovations Dry Reagent Technology with the *Biomek i7 Automated Workstation and *CytoFLEX LX Flow Cytometer
- Biomek i7 Hybrid Automated KAPA mRNA HyperPrep Workflow
- Fully Automated Peptide Desalting for Liquid Chromatography–Tandem Mass Spectrometry Analysis Using Beckman Coulter Biomek i7 Hybrid Workstation
- High-throughput Miniaturization of Cytochrome P450 Time-dependent Inhibition Screening Using the Echo 525 Liquid Handler
- Miniaturization of an Epigenetic AlphaLISA Assay with the Echo Liquid Handler and the BMG LABTECH PHERAstar FS
- Miniaturization of Cytochrome P450 Time-dependent Inhibition Screening Using the Echo 555 Liquid Handler
- Utilization of the MicroClime Environmental Lid to Reduce Edge Effects in a Cell-based Proliferation Assay
- Brochures, Flyers and Data Sheets
-
Case Studies
- Adenoviral Vectors Preparation
- Algae Biofuel Production
- Autophagy
- B Cell Research
- Basic Research on Reproductive Biology
- Cardiovascular Disease Research
- Cell Marker Analysis
- Choosing a Tabletop Centrifuge
- Collagen Disease Treatment
- Controlling Immune Response
- Creating Therapeutic Agents
- DNA Extraction from FFPE Tissue
- English Safety Seminar
- Equipment Management
- Exosome Purification Separation
- Future of Fishing Immune Research
- Hematopoietic Tumor Cells
- iPS Cell Research
- Membrane Protein Purification X Ray Crystallography
- Organelles Simple Fractionation
- Particle Interaction
- Quality evaluation of gene therapy vector
- Retinal Cell Regeneration
- Sedimentary Geology
- Severe Liver Disease Treatment
- Treating Cirrhosis
- University Equipment Management
- Fundamentals of Ultracentrifugal Virus Purification
- Catalogs
- eBooks
- Flyers
- Interviews
-
Posters
- AMP 2019: Correlation Between Mutations Found in FFPE Tumor Tissue and Paired cfDNA Samples
- Applications of Ultracentrifugation in Purification and Characterization of Biomolecules
- Automating Genomic DNA Extraction from Whole Blood and Serum with GenFind V3 on the Biomek i7 Hybrid Genomic Workstation
- ABRF 2019: Automated Genomic DNA Extraction from Large Volume Whole Blood
- Automated library preparation for the MCI Advantage Cancer Panel at Miami Cancer Institute utilizing the Beckman Coulter Biomek i5 Span-8 NGS Workstation
- Automating Cell Line Development for Biologics
- Cellular Challenges: Taking an Aim at Cancer
- Cell-Line Engineering
- Characterizing the Light-Scatter Sensitivity of the CytoFLEX Flow Cytometer
- ASHG 2019: Comparison between Mutation Profiles of Paired Whole Blood and cfDNA Samples
- ASHG 2019: Correlation Between Mutations Found in FFPE Tumor Tissue and Paired cfDNA Samples
- AACR 2019: Isolation and Separation of DNA and RNA from a Single Tissue or Cell Culture Sample
- Mastering Cell Counting
- AACR 2019: Correlation between Mutations Found in FFPE Tumor Tissue and Paired cfDNA Samples
- Preparing a CytoFLEX for Nanoscale Flow Cytometry
- A Prototype CytoFLEX for High-Sensitivity, Multiparametric Nanoparticle Analysis
- AGBT 2019: A Scalable and Automatable Method for the Extraction of cfDNA
- ABRF 2019: Simultaneous DNA and RNA Extraction from Formalin-Fixed Paraffin Embedded (FFPE) Tissue
- A Complete Automation and Reagent Workflow for Analysis of cfDNA: from Plasma to Variants
- Product Instructions
- Experimental Protocols
-
Whitepapers
- Centrifugation is a complete workflow solution for protein purification and protein aggregation quantification
- AUC Insights - Analysis of Protein-Protein-Interactions by Analytical Ultracentrifugation
- GMP Cleanrooms Classification and Routine Environmental Monitoring
- AUC Insights - Assessing the quality of adeno-associated virus gene therapy vectors by sedimentation velocity analysis
- AUC Insights - Sample concentration in the Analytical Ultracentrifuge AUC and the relevance of AUC data for the mass of complexes, aggregation content and association constants
- Characterization of RNAdvance Viral XP RNA Extraction Kit using AccuPlex™ SARS–CoV–2 Reference Material Kit
- CytoFLEX Platform Flow Cytometers with IR Laser Configurations: Considerations for Red Emitting Dyes
- Hydraulic Particle Counter Sample Preparation
- Inactivation of COVID–19 Disease Virus SARS–CoV–2 with Beckman Coulter Viral RNA Extraction Lysis Buffers
- Liquid Biopsy Cancer Biomarkers – Current Status, Future Directions
- MET ONE 3400+ IT Implementation Guide
- Japan Document
-
Application Notes